
WSRPtk

Table of contents

1 About..2

1.1 Maintaining this Website...2

1.2 Project Roles..2

2 WSRP V1 Conformance.. 3

2.1 WSRP V1 Conformance Test Kit..3

2.2 Getting Started...4

2.3 Executing the Test Kit... 5

2.4 Project Directory Structure..7

2.5 Architecture... 7

2.6 Development..8

2.7 WSRP Conformance Test Kit Tutorial..19

3 All.. 21

Copyright © 2005 All rights reserved.

1. About

1.1. Maintaining this Website

1.1.1. Under Construction

This site is under construction. It is generated from source files using Apache Forrest
(version 0.7). The source files for this website are stored in the WSRPtk project's CVS
repository. The generated site is uploaded to the Source Forge website using SFTP.

1.2. Project Roles

1.2.1. Source Forge User Types

Unauthenticated User

A member of the general public who downloads and uses the test kit software.

Authenticated User

A person who has established a Source Forge user id and password. In order to obtain a user
id, the person must sign Terms and Conditions, indicating that they promise to abide by the
license terms of any project to which them make a contribution.

Developer

An Authenticated User who has obtained commit priveleges on a Source Forge Project.

Release Technicial

A Developer who also has the privelege to use the File Release System to create and post
releases.

Project Administrators

The Authenticated User that created the project in the first place. The Project Administrator
has all priveleges and can grant Developers Project Administrator priveleges. The Project
Administrator also grants commit priveleges to Authenticated Users to enable them to be
Developers.

1.2.2. Becoming a Developer

The steps to becoming a developer on the WSRPtk Project are as follows:

WSRPtk

Page 2
Copyright © 2005 All rights reserved.

1. Obtain a SourceForge account to become an Authenticated User and sign the Terms and
Conditions

2. Request Developer priveleges by sending an email to the Project Administrator
• The OASIS Technical Committee Conformance Sub Committee must vote to grant

developer priveleges to the requester.
• The requester must be an employee of an OASIS TC member company.

3. The Project Administrator will add priveleges to the requester's account.

Note:
Some Developers will also be granted Release Technician priveleges, according to the wishes of the Conformance Sub
Committee.

1.2.3. Conformance Sub Committee

The OASIS Technical Committee Conformance Sub Committee is involved in the
management of the WSRPtk project in the following ways:

1. Chair of the Conformance Sub Committee will be granted Project Administrator
priveleges.

2. The Conformance Sub Committee votes to grant Project Administrator priveleges to one
or more Developers.

3. The Conformance Sub Committee votes to release each version of the Test Kit
4. The Conformance Sub Committee designates a Developer (i.e. Release Technician) to

publish the release to the File Release System
5. The Conformance Sub Committee reviews and votes to accept 3rd Party Contributions

1.2.4. Handling 3rd Party Contributions

If a person who is not a Developer wishes to contribute code to the project:

1. The Conformance Sub Committee shall review the code contribution to verify the origin
of the code and that it can be released under the Common Public License.

2. The Conformance Sub Committee votes to accept it.
3. A Developer then commits the code to the project.

2. WSRP V1 Conformance

2.1. WSRP V1 Conformance Test Kit

2.1.1. Introduction

The V1 Conformance Test Kit is designed to verify conformance of running WSRP

WSRPtk

Page 3
Copyright © 2005 All rights reserved.

Producers and Consumers to the V1 WSRP Specification. The Test Kit does not provide
100% coverage of the V1 conformance statements. Refer to the WSRPtk project website
under Feature Requests for a list of assertions that are outstanding.

This website provides documentation for the V1 Test Kit, but is also a work in progress.
Information on how this website is produced can be found here.

Refer to links on left hand side of this page to find information on how to download the Test
Kit and its prerequisites and how to configure and execute the Test Kit.

A rudimentary export of the Power Point tutorial is also provided. Most of this site's initial
content has come from this tutorial. The documentation of how to write test assertions has
not been incorporated into these web pages yet, so refer to the tutorial for help with
development.

A brief overview of the architecture is available.

The development content is a work in progress and has not yet been extracted from the
tutorial.

2.2. Getting Started

2.2.1. Obtaining the Release

Download the release from the website. Unzip the file in any directory.

2.2.2. Obtaining and Installing Prerequisites

2.2.2.1. Eclipse Web Tools

1. Download Web Tools 1.0.1 from here.
2. Unpack Zip File
3. Copy from:

eclipse/plugins/org.eclipse.wst.wsi_1.0.1.v200602030355.jar
to: wsrptk/lib

Note:
Note: the name of this jar file has changed over time. You may have wsi-core.jar and wsi-validate.jar already on your system if
you have previously installed Web Tools. These jars *should* work also.

2.2.2.2. WS-I Testing Tools

1. Download the WS-I Testing Tools 1.1 from here.

WSRPtk

Page 4
Copyright © 2005 All rights reserved.

2. Unpack Zip File
3. Copy from: wsi-test-tools/common/xsl/*.* to: wsrptk/xsl
4. Copy from: wsi-test-tools/common/schemas/*.* to: wsrptk/schemas

2.2.2.3. XSL Stylesheet Issues

• The namespace definitions in the XSL stylesheets obtained from WS-I are out of date
with respect to the jar files from Eclipse.

• The embedded style directives use ALL CAPS for HTML tag names, and they have to be
lower case to get proper formatting.

• The WSRPTK project has patch files that can be applied to make these corrections.

2.3. Executing the Test Kit

2.3.1. Summary of Steps

Executing the Test Kit happens in 2 phases. The first phase is the Monitoring phase, during
which a message log is created from a running WSRP service. The second phase is the
Analysis phase, during which the log file is analyzed for conformance.

Here is an architectural diagram of the components:
Diagram of Test Kit Architecture

In general, these are the steps for running the test kit:

1. Configure the Producer to listen on a particular port (e.g. 8080).
2. Configure the Consumer to write to a particular port (e.g. 8081).
3. Configure the Monitor to listen to the Consumer (e.g. on 8081) and send to the Producer

(e.g. on 8080) by setting the port numbers in the config file.
4. Start your Producer (e.g. WSRP4J on Tomcat)
5. Start the Monitor (bin/Monitor.bat)
6. Start your Consumer (e.g. WSRP4J Swing Consumer)
7. Exercise the User Interface
8. Exit the Consumer
9. Stop the Monitor (type "exit")
10.Run the Analyzer (bin/Analyzer.bat)
11.View the Report (logs/AnalyzerLog.xml)

2.3.2. The Monitor Component

The Monitor is a WS-I Testing Tools component that intercepts web service traffic between
parties and writes the messages to a log file.

WSRPtk

Page 5
Copyright © 2005 All rights reserved.

The Functional Specification for the Monitor component can be found here.

The Monitor gets parameters from a configuration file, the path to which is passed in at
runtime. The config file is found in wsrptk/config. Here is a sample of configuration
file:

. . .
<wsi-monConfig:logFile replace="true" location="../logs/MonitorLog.xml">
<wsi-common:addStyleSheet href="../xsl/log.xsl" type="text/xsl"/>
</wsi-monConfig:logFile>
. . .
<wsi-monConfig:manInTheMiddle>
<wsi-monConfig:redirect>
<wsi-monConfig:listenPort>8081</wsi-monConfig:listenPort>
<wsi-monConfig:schemeAndHostPort>http://localhost:8080</wsi-monConfig:schemeAndHostPort>
<wsi-monConfig:maxConnections>1000</wsi-monConfig:maxConnections>
<wsi-monConfig:readTimeoutSeconds>15</wsi-monConfig:readTimeoutSeconds>
</wsi-monConfig:redirect>
</wsi-monConfig:manInTheMiddle>
. . .

2.3.3. The Analyzer Component

The Analyzer is a WS-I Testing Tools component that intercepts web service traffic between
parties and writes the messages to a log file.

The Functional Specification for the Analyzer component can be found here.

The Analyzer gets parameters from a configuration file, the path to which is passed in at
runtime. The config file is found in wsrptk/config. Here is a sample of configuration
file:

<wsi-analyzerConfig:configuration name="Sample WSRP Profile Analyzer
Configuration"
xmlns:wsi-analyzerConfig="http://www.ws-i.org/testing/2003/03/analyzerConfig/">
. . . .
<wsi-analyzerConfig:reportFile replace="true"
location="../logs/AnalyzerLog.xml">
<wsi-analyzerConfig:addStyleSheet href="../xsl/report.xsl"
type="text/xsl"/>
</wsi-analyzerConfig:reportFile>
<wsi-analyzerConfig:testAssertionsFile>
../profiles/WSRPProfileTestAssertions.xml
</wsi-analyzerConfig:testAssertionsFile>
<wsi-analyzerConfig:logFile correlationType="endpoint">
../logs/MonitorLog.xml
</wsi-analyzerConfig:logFile>

WSRPtk

Page 6
Copyright © 2005 All rights reserved.

. . . .
</wsi-analyzerConfig:configuration>

2.4. Project Directory Structure

The WSRPTK project has the following directories:

Directory Contents

bin Batch files for running command line programs

config Configuration files for the Monitor and Analyzer

lib Jar files

logs Generated message logs and reports

profiles Profile assertions document

schemas Schema files for WS-I tools as well as WSRP

wsdl WSDL files for WSRP

xsl Stylesheets for viewing logs and reports in
HTML

src Java source for WSRPTK

site Source and intermediate build results for the
WSRPTK web site

classes Intermediate build results for WSRPTK

doc This tutorial

javadoc Generated javadoc for WSRPTK

2.5. Architecture

2.5.1. Introduction

The WSRPtk makes use of the Web Services Interoperability (WS-I) Testing Tools, by using
a man-in-the-middle architecture to capture the web service message flow between Producer
and Consumer. The Monitor tool is used to log messages between Producer and Consumer. It
passes the messages unchanged between them. The messages are saved in the Message Log.

The Message Log file is then analyzed offline by the Analyzer tool to see if the messages

WSRPtk

Page 7
Copyright © 2005 All rights reserved.

http://www.ws-i.org

meet the conformance requirements. The WSRPtk extends the WS-I Analyzer by
implementing test assertions that evaluate the messages with respect to the WSRP V1
Specification. The Profile is an XML file that contains a description of each test assertion,
and is used to tell the Analyzer which test assertions to execute. The logic for each test
assertion is written in a Java class which the Analyzer loads at runtime.

The Analyzer creates an XML file containing the Report which summarizes the results of the
test assertions.

Diagram of Test Kit Architecture

2.6. Development

2.6.1. Development

2.6.1.1. Introduction

This section covers information needed by developers to add new test assertions to the V1
Conformance Test Kit. It is assumed that the reader is familiar with the test kit architecture
and WSRP.

Creating a new Test Assertion requires 2 basic steps:

1. Enable the Test Assertion in the Profile, or add it to the Profile if it doesn't already exist.
2. Write the Java code to implement the Test Assertion logic.

Additional steps are required if the Test Assertion requires the use of the Specialized Portlet:

1. Add the JSP file to the webapp.
2. Add the JSP to the flow_script_master.xml and flow_script.xml files.

2.6.2. WSRP Profile

2.6.2.1. Introduction

The Profile is an XML document that contains a description of each Test Assertion in the test
kit. The Profile is found in the profile directory and is called
WSRPProfileTestAssertions.xml. If you open the file in a browser window, an
XSL stylesheet is loaded which converts the XML to HTML for more convenient viewing.

The Profile was created initially from the conformance statements found in the WSRP
Specification. The conformance statements are documented in a spreadsheet on the OASIS
WSRP site. The conformance statements were boiled down into Test Assertions and
documented in the Profile.

WSRPtk

Page 8
Copyright © 2005 All rights reserved.

The Profile is read at runtime by the Analyzer to determine which Test Assertions should be
executed. Test Assertions which are "enabled" are executed, the rest are skipped.

Types of Test Assertions

There are 3 types of Test Assertions. The primary focus the V1 Conformance Test Kit is to
verify the message content of a running WSRP service. As a result, the vast majority of Test
Assertions are of the Message type.

• Discovery -- Verifies UDDI entries
• WSRP Profile has no UDDI assertions

• Description -- Verifies WSDL entries
• WSRP Profile has some WSDL assertions

• Message -- Verifies message content in the log file
• WSRP Profile has many message assertions
• Primary focus of test kit.

If the configuration options for the Analyzer requires WSDL processing, then the Analyzer
reads the WSDL and execute the Test Assertions from the Profile that are in the description
artifact.

After the WSDL is evaluated, the Analyzer processes the message log file one message at a
time. In general, for each message in the log file, the Analyzer executes each enabled Test
Assertion in the Profile, although the entryType attribute results in some high level filtering.
Test Assertions which have an entryType of requestMessage are executed only for requests,
those having an entryType of responseMessage are executed only for responses, and those
with an entryType of anyMessage, are executed for all messages.

A Test Asssertion evaluates each artifact passed to it, and generates a result. The result can
be Pass, Fail, or Not Applicable.

The Analyzer finds the proper Java class to execute for a Test Assertion based on a naming
convention where the Java class has the same name as the assertion id in the Profile.

Sample Test Assertion

<testAssertion id="RP0070" entryType="responseMessage" type="required"
enabled="false">
<context>getServiceDescriptionResponse</context>
<assertionDescription>
If the Consumer uses a Producer who has set requiresInitCookie
to a value other than "none", it shall:
1. Invoke initCookie for each portlet from such a

WSRPtk

Page 9
Copyright © 2005 All rights reserved.

Producer for each new end-user;
2. Return the set cookie(s) only for this end-user
(see AS006, AS023 and AS024).

</assertionDescription>
<failureMessage>
When a Producer sets ServiceDescription.requiresInitCookie
to a value other than "none", the Consumer
has to invoke initCookie()

</failureMessage>
<failureDetailDescription>{SOAP message}{any XML parser error

messages}</failureDetailDescription>
<additionalEntryTypeList>
<messageInput>none</messageInput>
<wsdlInput>none</wsdlInput>
<uddiInput>none</uddiInput>

</additionalEntryTypeList>
<prereqList/>
<referenceList>
<reference profileID="WSRP1"/>

</referenceList>
<comments/>

</testAssertion>

Elements and Attributes of a Test Assertion

Many of the elements and attributes in the Test Assertion are not used, but the ones that are
important are:

Name Description

id attribute This is the unique name of the Test Case.
Naming conventions are discussed in more
detail below.

Type attribute This is determines to which type of message log
td the Test Case applies. For example:
responseMessage, requestMessage, binding.

type attribute "required" or "recommended". Used to
distinguish MUST from SHOULD in
Conformance Statements.

enabled attribute "true" or "false". If "true", execute the test case
on the data. If "false", just skip it. This is used
when the Test Case is added to the Profile but
the code hasn't been written yet. The Test Case
will show up on the report as not enabled.

WSRPtk

Page 10
Copyright © 2005 All rights reserved.

assertionDescription element This is the same as the Conformance Statement
text.

failureMessage element This text is output in the report when a Test
Case fails.

prereqList element This element is used to list other Test Cases (by
id) that must be run before this one. If a
prerequisite Test Case fails, then so does this
one.

2.6.3. Programming New Test Assertions

2.6.3.1. Introduction

The following sections provide an overview of the organization of the Java classes which
makeup the test kit. The test kit extends the WS-I implementation and relies on the behaviour
of existing base classes wherever possible.

2.6.3.2. Factory

There is an extension point in the WS-I framework which allows us to insert our own factory
implementation during initialization. We use these factories to cause our specialized classes
to be constructed. The wsi.properties file specifies our factory:

Profile validation factory.

wsi.profile.validator.factory=org.oasis.wsrp.test.impl.WSRPValidatorFactoryImpl

2.6.3.3. WS-I Base Validator

Refer to the diagram below. The classes in yellow are the WS-I base classes and the classes
in white are the WSRP extensions. The WSRPValidatorFactoryImpl creates the
WSRP specific extensions when the Analyzer is started. The
WSRPMessageValidatorImpl class plays an important role in the execution of Test
Assertions because there is only one instance of this class for all message Test Assertions.
The WSRPMessageValidatorImpl instance is used to share data between Test
Assertions or between messages. This is discussed in more detail in a subsequent section.

Relationships among base validateor implementations and extensions

In the WSRPTK, there are very few Test Assertions which deal with the WSDL. The vast
majority of Test Assertions are focused on examining the messages in the log file. In general,
there is a symmetrical treatment of message artifacts and description artifacts. For the next

WSRPtk

Page 11
Copyright © 2005 All rights reserved.

few sections, only the structure and relationships among the classes involved in the message
processing side of the system are discussed. Classes which handle description artifacts may
be included on the diagrams, but are not distinguished further.

2.6.3.4. Extending AssertionProcess

Refer to the diagram below. Again, the yellow classes are WS-I base classes, and the white
classes are WSRP specific. The small class, RP0090, at the bottom of the diagram is an
example of a Test Assertion.

Test Assertions ultimately extend AssertionProcess and get a reference to
WSRPMessageValidatorImpl

Ultimately, all Test Assertions are derived from AssertionProcess. This class declares
the validate() method that all Test Assertions must implement. The
AssertionProcess class also declares a member variable to hold an instance of
BaseValidatorImpl.

WSRPTK introduces 2 intermediate classes between Test Assertions and
AssertionProcess. WSRPBaseAssertionProcess is used to implement
convenience methods such as pass(), fail(), etc, for setting the result of a Test
Assertion, regardless of whether the Test Assertion is on the message artifact side or the
description artifact side.

2.6.3.5. Constructor Hack

WSRPMessageAssertionProcess extends the WSRPBaseAssertionProcess in
order to declare the instance of the specialized WSRPMessageValidatorImpl to which
all the Test Assertions need access for data sharing. The BaseValidatorImpl is
responsible for parsing and loading the message log file and then creating and invoking the
Test Assertions in the Profile. When a Test Assertion Java class, e.g. RP0090, gets
initialized, the BaseValidatorImpl passes an instance of
BaseMessageValidatorImpl into the constructor. The Test Assertion calls the
constructor on it's superclass, WSRPMessageAssertionProcess, passing the
BaseMessageValidatorImpl. The superclass forces a cast of the
BaseMessageValidatorImpl to WSRPMessageValidatorImpl and saves it in a
protected member variable called validator.

This hack is necessary for historical reasons. The original WS-I framework was organized so
that all the Test Assertion classes were inner classes of the
WSRPMessageValidatorImpl class, and so they had direct access to its methods and
state. At some point, the architecture was changed so that the Test Assertions were separated
into individual files and this hack became necessary to preserve access to the specialized

WSRPtk

Page 12
Copyright © 2005 All rights reserved.

methods and state of the WSRPMessageValidatorImpl.

2.6.3.6. WSRPMessageValidatorImpl

As explained above, there is a single instance of this class which is available to all Test
Assertions through the use of the protected variable validator. This class offers many
convenience methods as well as saving state between messages. Let's look at the following
Test Assertion:

RP0510 The value supplied in MarkupParams.windowState
shall be either "wsrp:view" or one of the values from
the PortletDescription.markupTypes[].windowStates
for a matching mime type, which has to have a value

This Test Assertion looks at a getMarkupRequest and has to check the value of window
state against a set of valid window states which were supplied in the
getServiceDescriptionResponse. In the following code fragment, RP0510 uses
convenience methods from the WSRPMessageValidatorImpl to locate the
offeredPortlet from the saved getServiceDescriptionResponse.

//-----------------------------------
// we got a portlet handle out of the request, so
// lookup the offeredPortlet in the getServiceDescriptionResponse which
was
// previously saved
regHandle = validator.findRegistrationHandle((Node)
doc.getDocumentElement());
portletHandle = validator.checkForClonedPortlet(portletHandle,
regHandle);
offeredPortlet = validator.findOfferedPortlet(portletHandle);
if (offeredPortlet == null) {
// this means the portlet was not found in the serviceDescriptionResponse
fail("Cannot find portlet with handle: " +
portletHandle +
" in serviceDescriptionResponse");
done = true;
}

This Test Assertion relies on the fact that another Test Assertion, RP0320 saves the
serviceDescriptionResponse. Note that if a log file is analyzed that does not
contain the serviceDescriptionResponse message, then any Test Assertion that
relies on it will fail.

The WSRPMessageValidatorImpl has many methods which are beyond the scope of
this tutorial. The reader is encouraged to examine the source code. The following diagram

WSRPtk

Page 13
Copyright © 2005 All rights reserved.

shows the WSRPMessageValidatorImpl and all the classes it references. Not all the
methods are visible.

WSRPMessageValidatorImpl

2.6.3.7. Choosing a Base Class to Extend

There are several choices as to which class to extend to create a new Test Assertion. The
WSRPBaseAssertionProcess class, the BaseRP class, CustomItemChecker, or
an existing Test Assertion. The diagram below shows several Test Assertions and the classes
they extend. CustomItemChecker is specialized and is used to parse the markup have a
listener called when certain things are found. The BaseRP class checks the message type
and then delegates handling of the message to the Test Assertion subclass. This design
pattern was introduced after many Test Assertions were already implemented, so you may
discover Test Assertions that would have benefited from this approach.

WSRPMessageAssertionProcess

2.6.3.8. Worked Example

Let's look at a simple Test Assertion.

RP0090 Every time an extension element appears in a WSRP
message, it's child element shall use the xsi:type
attribute to declare its type.

Here is the source code:

/*
* Copyright (c) 2002-2005 IBM Corporation. All rights reserved.
*
* ===
*
* @author Julie MacNaught jmacna@us.ibm.com
* @author Martin Fanta Martin.Fanta@cz.ibm.com
*
*/
package org.oasis.wsrp.test.impl.message;
import javax.xml.transform.TransformerException;
import org.eclipse.wst.wsi.internal.core.WSIException;
import org.eclipse.wst.wsi.internal.core.profile.TestAssertion;
import org.eclipse.wst.wsi.internal.core.profile.validator.EntryContext;
import
org.eclipse.wst.wsi.internal.core.profile.validator.impl.BaseMessageValidator;
import org.eclipse.wst.wsi.internal.core.report.AssertionResult;
import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;

WSRPtk

Page 14
Copyright © 2005 All rights reserved.

import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
/**
* Assertion: Every time an extension element appears in a WSRP message,
it's child
* element shall use the xsi:type attribute to declare its type.
*
* @author Julie MacNaught (jmacna@us.ibm.com)
* @author Martin Fanta (Martin.Fanta@cz.ibm.com)
*
*/
public class RP0090 extends WSRPMessageAssertionProcess {
public RP0090(BaseMessageValidator impl) {
super(impl);

}
public AssertionResult validate(TestAssertion testAssertion, EntryContext
entryContext) throws WSIException {
if (validator.isOneWayResponse(entryContext)) {
na();

} else {
try {
// parse the request message
Document reqDoc = entryContext.getRequestDocument();
// get all the extension elements included in the request
NodeList extNodes = NodeUtils.getNodes(reqDoc, "extension");
int extNodeCount = extNodes.getLength();
if (extNodeCount < 1) {
na();

} else {
Node extNode, childNode;
NamedNodeMap attribs;
for (int ii = 0; ii < extNodeCount; ii++) {
extNode = extNodes.item(ii);
childNode = extNode.getFirstChild();
if (childNode != null) {
attribs = childNode.getAttributes();
if (attribs.getNamedItem("xsi:type") != null) {
// it is probably sufficient to assume that if the

attribute is present,
// the condition of this test case is fulfilled
pass();

} else {
fail("If an extension element is present, its child has to

have the 'xsi:type' attribute defined");
}

} else {
warn("Extension element has no children");

WSRPtk

Page 15
Copyright © 2005 All rights reserved.

}
}

}
} catch (TransformerException te) {
te.printStackTrace();
fail(te.getMessage());

}
}
return createAssertionResult(testAssertion, result,

failureDetailMessage);
}
}

This Test Assertion extends WSRPBaseAssertionProcess and implements the
validate() method. It also implements a constructor so it can establish a handle to the
WSRPMessageValidatorImpl class. It uses a class called NodeUtils which
implements various shortcuts to XPATH for finding nodes in messages.

2.6.4. Specialized Portlet

2.6.4.1. Introduction

The purpose of the Specialized Portlet is to cause certain conditions to occur so that the
Analyzer can look a the messages and detemine if the Consumer handled the situation
according to the spec. The Specialized Portlet generates markup with particular values that
the Analyzer can look for in the message log.

The Specialized Portlet works by reading a file called flow_script.xml which tells it
which JSP file to load. The JSP file actually contains the markup that the Specialized Portlet
supplies on a getMarkupRequest. The flow_script.xml file allows test cases to be
repeated a particular number of times.

Here is a sample of the flow_script.xml file:

2.6.4.2. flowscript.xml

The SpecializedPortlet reads an XML file, called flow_script.xml, which tells the
portlet which tests to execute. The test cases are actually represented by JSP files. Here is a
sample of the flow_script.xml file:

<flow>
<case id="134">
<pass repeatCount="2">
<jspInclude name="test_case_1340_1.jsp" />

</pass>

WSRPtk

Page 16
Copyright © 2005 All rights reserved.

</case>
</flow>

A Specialized Portlet JSP typically contains a form and has javascript logic that causes the
form to be automatically submitted. This allows the Specialized Portlet to execute all the
tests without further human intervention.

2.6.4.3. Specialized Portlet Example

Let's look at an example:

RP1340 When an activated portlet URL has specified the
wsrp-navigationalState portlet URL parameter, the
Consumer shall supply its value unchanged in the
MarkupParams.navigationalState field.

Here is the JSP file for this test (line feeds have been added to improve readability):

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri='/WEB-INF/tld/portlet.tld' prefix='portlet'%>
<portlet:defineObjects/>
<script>
setTimeout('wsrp_rewrite_reload()',5000);
function wsrp_rewrite_reload()
{
// only the first instance of the portlet shall submit the form
var form = document.forms.wsrp_test_submit_form;
if((form.wsrp_test_counter.value == "0") &&

(form.wsrp_test_autoSubmit.value == "true"))
{
form.wsrp_test_autoSubmit.value = "false";
form.wsrp_test_counter.value = "1";
// callback function for JSP's which are including this javascript
wsrp_test_do(form);
form.submit();

}
}
function wsrp_test_do(form)
{
}
</script>
<form name="wsrp_test_submit_form" method="post"
action="wsrp_rewrite?
wsrp-urlType=blockingAction&
wsrp-mode=wsrp:view&
wsrp-windowState=wsrp:normal&
wsrp-secureURL=false&

WSRPtk

Page 17
Copyright © 2005 All rights reserved.

wsrpnavigationalState=wsrp_test_navigationalState
/wsrp_rewrite
&wsrp_test_expectedNavigationalState=wsrp_test_navigationalState">

Test case #134.

<input type="hidden" name="wsrp_test_autoSubmit" value="true"></input>
<input type="hidden" name="wsrp_test_currentCase"
value="<%=(String)renderRequest.getAttribute("wsrp_test_currentCase")%>"></input>

<input type="hidden" name="wsrp_test_passCounter"
value="<%=(String)renderRequest.getAttribute("wsrp_test_passCounter")%>"></input>

<input type="hidden" name="wsrp_test_counter" value="0"></input>
<input type="submit" value="Submit"></input>

</form>

Notice that the rewrite URL contains navigationalState. Here is the Test Assertion code that
examines the log:

private static final String CODEM_NAME_EXPECTED_NAVIGATIONAL_STATE =
"wsrp_test_expectedNavigationalState";
protected void processPerformBlockingInteractionRequest(Document reqDoc)
throws WSIException, TransformerException {
// find the interactionParams node
Node iaParamsNode = NodeUtils.getNode(reqDoc, "interactionParams");
if (iaParamsNode != null) {
// find all form codemeters
NodeList formParamNodes = NodeUtils.getNodes(iaParamsNode,

"formParameters");
int formParamCount = formParamNodes.getLength();
Node formParamNode;
String formParamName, expectedNavStateValue = null;
// go through the form codemeters until we find the one that

interests us (if any)
for (int ii = 0; ii < formParamCount; ii++) {
formParamNode = formParamNodes.item(ii);
formParamName = NodeUtils.getAttributeValue(formParamNode, "name");
if (CODEM_NAME_EXPECTED_NAVIGATIONAL_STATE.equals(formParamName)) {
// find the value subnode
Node valueNode = NodeUtils.getTextNode(formParamNode, "value");
expectedNavStateValue =

NodeUtils.getSafeTextNodeValue(valueNode);
break;

}
} // for ii
if (expectedNavStateValue != null) {
// compare the expected navigational state value to the one

actaully supplied
// find the markupParams node
Node markupParamsNode = NodeUtils.getNode(reqDoc, "markupParams");
if (markupParamsNode != null) {

WSRPtk

Page 18
Copyright © 2005 All rights reserved.

// find the navigational state subnode
Node navStateNode = NodeUtils.getTextNode(markupParamsNode,

"navigationalState");
String navState = NodeUtils.getSafeTextNodeValue(navStateNode);
if (expectedNavStateValue.equals(navState)) {
pass();

} else {
fail(
"Expected navigational state: "
+ expectedNavStateValue
+ "; supplied navigational state: "
+ navState);

}
} else {
fail("Missing markupParams node");

}
} // expected navigational state value not null

} // interaction codems not null
} // processPerformBlockingInteractionRequest()

The Test Assertion looks at the value of an interaction parameter for the value that the
navigationalState should contain.

2.7. WSRP Conformance Test Kit Tutorial

2.7.1.

Click here to start

Table of contents

WSRP Conformance Test Kit Tutorial

Topics

Test Kit Requirements

WS-I Test Tools

WSRP Conformance Test Kit Architecture

WSRP Profile

Running Everything End to End

WS-I Components

Monitor

Analyzer

Author: Julie MacNaught

E-mail: jmacna@us.ibm.com

Homepage: http://wsrptk.sourceforge.net/

Download presentation

WSRPtk

Page 19
Copyright © 2005 All rights reserved.

http://wsrptk.sourceforge.net/

Analyzer Configuration File

Profile Details

Sample Test Assertion

Test Assertion Implementation

WSRPValidatorFactoryImpl

WS-I Base Classes

Assertion Constructor Magic

Using WSRPMessageValidatorImpl for State

Extending Base Classes

Test Assertion Example

Slide 21

NodeUtils

Specialized Portlet

XML Script File

Specialized Portlet Example

Slide 26

Slide 27

Running the Specialized Portlet

WSRPTK Source Forge Project

WSRPTK Directory Organization

Prerequisites

Prerequisites, contâ€™d

Slide 33

Contributing to the WSRPTK Project

Source Forge User Types

Becoming a Developer

Project Administration

Release Process

WSRPtk

Page 20
Copyright © 2005 All rights reserved.

Handling 3rd Party Contributions

Project TODOs

3. All

WSRPtk

Page 21
Copyright © 2005 All rights reserved.

	1 About
	1.1 Maintaining this Website
	1.1.1 Under Construction

	1.2 Project Roles
	1.2.1 Source Forge User Types
	1.2.2 Becoming a Developer
	1.2.3 Conformance Sub Committee
	1.2.4 Handling 3rd Party Contributions

	2 WSRP V1 Conformance
	2.1 WSRP V1 Conformance Test Kit
	2.1.1 Introduction

	2.2 Getting Started
	2.2.1 Obtaining the Release
	2.2.2 Obtaining and Installing Prerequisites
	2.2.2.1 Eclipse Web Tools
	2.2.2.2 WS-I Testing Tools
	2.2.2.3 XSL Stylesheet Issues

	2.3 Executing the Test Kit
	2.3.1 Summary of Steps
	2.3.2 The Monitor Component
	2.3.3 The Analyzer Component

	2.4 Project Directory Structure
	2.5 Architecture
	2.5.1 Introduction

	2.6 Development
	2.6.1 Development
	2.6.1.1 Introduction

	2.6.2 WSRP Profile
	2.6.2.1 Introduction
	2.6.2.1.1 Types of Test Assertions
	2.6.2.1.2 Sample Test Assertion
	2.6.2.1.3 Elements and Attributes of a Test Assertion

	2.6.3 Programming New Test Assertions
	2.6.3.1 Introduction
	2.6.3.2 Factory
	2.6.3.3 WS-I Base Validator
	2.6.3.4 Extending AssertionProcess
	2.6.3.5 Constructor Hack
	2.6.3.6 WSRPMessageValidatorImpl
	2.6.3.7 Choosing a Base Class to Extend
	2.6.3.8 Worked Example

	2.6.4 Specialized Portlet
	2.6.4.1 Introduction
	2.6.4.2 flowscript.xml
	2.6.4.3 Specialized Portlet Example

	2.7 WSRP Conformance Test Kit Tutorial
	2.7.1

	3 All

