WSRPtk

Table of contents

AN o 011 | SR 2
1.1 Maintaining thiSWEDSITE...........ooiiieieee e 2
L2 PrOJECE ROIES......ciciieciie ettt sttt sttt e e e s te e s b e et e e s be e sseesbeeeneennen s 2

2 WSRP V1 CONFfOMMIBINCE.......cceiiiieitieieitie e etesee sttt et s e e sae e e sre e s e sneesneeteeneesneenns 3
21 WSRP V1 Conformance TESE Kit........cceiieieieeseeie e eee e 3
2.2 GELLING SEAMEA.......c.eeeieee ettt b e nne s 4
2.3 EXECULING the TESE Kit....cueieieeeeeese e 5
2.4 ProjeCt DIFCLOrY SIIUCLUIE.......cccuiieeeiieeiesieesie ettt ae e sne e e 7
2.5 ATCNITECIUNE. ...ttt e e e e be e sbe e s beeenreenreesareeas 7
Al B L= V= o o]0 1= o | RS 8
2.7 WSRP Conformance Test Kit TULOral.........ccceieereeieciese e eee e 19

WSRPtk

1. About

1.1. Maintaining this Website

1.1.1. Under Construction

This siteis under construction. It is generated from source files using Apache Forrest
(version 0.7). The source files for this website are stored in the WSRPtk project's CVS
repository. The generated site is uploaded to the Source Forge website using SFTP.

1.2. Project Roles

1.2.1. Source Forge User Types

Unauthenticated User

A member of the general public who downloads and uses the test kit software.
Authenticated User

A person who has established a Source Forge user id and password. In order to obtain a user
id, the person must sign Terms and Conditions, indicating that they promise to abide by the
license terms of any project to which them make a contribution.

Developer
An Authenticated User who has obtained commit priveleges on a Source Forge Project.
Release Technicial

A Developer who also has the privelege to use the File Release System to create and post
releases.

Project Administrators

The Authenticated User that created the project in the first place. The Project Administrator
has all priveleges and can grant Developers Project Administrator priveleges. The Project
Administrator also grants commit priveleges to Authenticated Users to enable them to be
Developers.

1.2.2. Becoming a Developer

The steps to becoming a developer on the WSRPtk Project are as follows:

Page 2

WSRPtk

1. Obtain a SourceForge account to become an Authenticated User and sign the Terms and
Conditions
2. Request Developer priveleges by sending an email to the Project Administrator
* The OASIS Technica Committee Conformance Sub Committee must vote to grant
developer priveleges to the requester.
* Therequester must be an employee of an OASIS TC member company.

3. TheProject Administrator will add priveleges to the requester's account.

’ Some Developers will also be granted Release Technician priveleges, according to the wishes of the Conformance Sub ‘
Committee.

1.2.3. Conformance Sub Committee

The OASIS Technica Committee Conformance Sub Committeeisinvolved in the
management of the WSRPtk project in the following ways.

1. Chair of the Conformance Sub Committee will be granted Project Administrator
priveleges.

2. The Conformance Sub Committee votes to grant Project Administrator privelegesto one
or more Developers.

3. The Conformance Sub Committee votes to release each version of the Test Kit

4. The Conformance Sub Committee designates a Developer (i.e. Release Technician) to
publish the release to the File Release System

5. The Conformance Sub Committee reviews and votes to accept 3rd Party Contributions

1.2.4. Handling 3rd Party Contributions

If aperson who is not a Devel oper wishes to contribute code to the project:

1. The Conformance Sub Committee shall review the code contribution to verify the origin
of the code and that it can be released under the Common Public License.

2. The Conformance Sub Committee votes to accept it.

3. A Developer then commits the code to the project.

2. WSRP V1 Conformance
2.1. WSRP V1 Conformance Test Kit

2.1.1. Introduction

The V1 Conformance Test Kit is designed to verify conformance of running WSRP

Page 3

WSRPtk

Producers and Consumers to the V1 WSRP Specification. The Test Kit does not provide
100% coverage of the V1 conformance statements. Refer to the WSRPtk project website
under Feature Requests for alist of assertions that are outstanding.

This website provides documentation for the V1 Test Kit, but is also awork in progress.
Information on how this website is produced can be found here.

Refer to links on left hand side of this page to find information on how to download the Test
Kit and its prerequisites and how to configure and execute the Test Kit.

A rudimentary export of the Power Point tutorial is also provided. Most of this site'sinitial
content has come from this tutorial. The documentation of how to write test assertions has
not been incorporated into these web pages yet, so refer to the tutorial for help with
development.

A brief overview of the architecture is available.
The devel opment content isawork in progress and has not yet been extracted from the
tutorial.

2.2. Getting Started

2.2.1. Obtaining the Release

Download the release from the website. Unzip the file in any directory.
2.2.2. Obtaining and I nstalling Prerequisites

2.2.2.1. Eclipse Web Tools

1. Download Web Tools 1.0.1 from here.

2. Unpack Zip File

3. Copy from:
ecl i pse/ plugins/org. eclipse.wst.wsi_1.0.1.v200602030355. j ar
toowsrptk/lib

Note: the name of thisjar file has changed over time. Y ou may have wsi-core.jar and wsi-validate.jar already on your system if
you have previously installed Web Tools. These jars * should* work also.

2.2.2.2. WS-l Testing Tools
1. Download the WS-I Testing Tools 1.1 from here.

Page 4

WSRPtk

2. Unpack Zip File
3. Copy from: wsi -t est -t ool s/ common/ xsl / *. * to: wsr pt k/ xsl
4. Copy from: wsi -t est -t ool s/ common/ schemas/ *. * to: wsr pt k/ schenas

2.2.2.3. XSL Stylesheet Issues

« The namespace definitionsin the XSL stylesheets obtained from WS-I are out of date
with respect to the jar files from Eclipse.

e The embedded style directivesuse ALL CAPS for HTML tag names, and they have to be
lower case to get proper formatting.

 TheWSRPTK project has patch files that can be applied to make these corrections.

2.3. Executing the Test Kit

2.3.1. Summary of Steps

Executing the Test Kit happens in 2 phases. The first phase is the Monitoring phase, during
which amessage log is created from arunning WSRP service. The second phase is the
Analysis phase, during which the log file is analyzed for conformance.

Hereis an architectural diagram of the components:
Diagram of Test Kit Architecture

In general, these are the steps for running the test kit:

1. Configure the Producer to listen on a particular port (e.g. 8080).
2. Configure the Consumer to write to a particular port (e.g. 8081).
3. Configure the Monitor to listen to the Consumer (e.g. on 8081) and send to the Producer
(e.g. on 8080) by setting the port numbersin the config file.
Start your Producer (e.g. WSRP4J on Tomcat)

Start the Monitor (bin/Monitor.bat)

Start your Consumer (e.g. WSRP4J Swing Consumer)

Exercise the User Interface

Exit the Consumer

Stop the Monitor (type "exit")

10 Run the Analyzer (bin/Analyzer.bat)

11.View the Report (logs/AnalyzerLog.xml)

©CoNo O A

2.3.2. The Monitor Component

The Monitor isaWS-| Testing Tools component that intercepts web service traffic between
parties and writes the messagesto alog file.

Page 5

WSRPtk

The Functional Specification for the Monitor component can be found here.

The Monitor gets parameters from a configuration file, the path to which is passed in at
runtime. The config fileisfound inwsr pt k/ conf i g. Hereisasample of configuration
file:

éméilnDannfig:IogFile repl ace="true" |ocation="../logs/ MnitorLog.xn ">
<wsi - conmon: addSt yl eSheet href="../xsl/log.xsl" type="text/xsl"/>
</ wsi -monConfi g: | ogFi | e>

<wsi - monConfi g: manl nTheM ddl e>

<wsi - nronConfi g: redi rect >

<wsi - monConfi g: | i st enPort >8081</wsi - nonConfi g: | i stenPort >

<wsi - nronConfi g: schemeAndHost Port >htt p: // 1 ocal host : 8080</ wsi - nronConf i g: schemeAndHost Por |
<wsi - ronConf i g: maxConnect i ons>1000</ wsi - nronConf i g: maxConnect i ons>

<wsi - nronConf i g: readTi meout Seconds>15</wsi - nonConfi g: r eadTi neout Seconds>

</ wsi - monConfi g: redi rect >

</ wsi - monConfi g: manl nTheM ddl e>

2.3.3. The Analyzer Component

The Analyzer isaWS-| Testing Tools component that intercepts web service traffic between
parties and writes the messagesto alog file.

The Functional Specification for the Analyzer component can be found here.

The Analyzer gets parameters from a configuration file, the path to which is passed in at
runtime. The config fileisfound inwsr pt k/ conf i g. Hereisasample of configuration
file

<wsi - anal yzer Confi g: confi gurati on nanme="Sanpl e WSRP Profil e Anal yzer
Confi guration”
xm ns: wsi -anal yzer Config="http://ww. ws-i.org/testing/2003/03/anal yzer Config/">

<wsi - anal yzer Confi g: reportFil e repl ace="true"

| ocation="../1o0gs/Anal yzerLog. xm ">

<wsi - anal yzer Confi g: addSt yl eSheet href="../xsl/report.xsl"
type="text/xsl"/>

</ wsi - anal yzer Confi g: reportFil e>

<wsi - anal yzer Confi g: t est Asserti onsFil e>
../lprofiles/WsRPProfil eTest Asserti ons. xm

</ wsi - anal yzer Confi g: t est Asserti onsFil e>

<wsi - anal yzer Confi g: |l ogFil e correl ati onType="endpoi nt" >
.. /1 ogs/ MonitorLog. xni

</wsi - anal yzer Confi g: | ogFi | e>

Page 6

WSRPtk

</ wsi - anal yzer Confi g: confi gurati on>

2.4. Project Directory Structure
The WSRPTK project has the following directories:

bin Batch files for running command line programs

config Configuration files for the Monitor and Analyzer

lib Jar files

logs Generated message logs and reports

profiles Profile assertions document

schemas Schema files for WS-I tools as well as WSRP

wsdl WSDL files for WSRP

xsl Stylesheets for viewing logs and reports in
HTML

src Java source for WSRPTK

site Source and intermediate build results for the
WSRPTK web site

classes Intermediate build results for WSRPTK

doc This tutorial

javadoc Generated javadoc for WSRPTK

2.5. Architecture

2.5.1. Introduction

The WSRPtk makes use of the Web Services Interoperability (WS-1) Testing Tools, by using
aman-in-the-middle architecture to capture the web service message flow between Producer
and Consumer. The Monitor tool is used to log messages between Producer and Consumer. It
passes the messages unchanged between them. The messages are saved in the Message Log.

The Message Log file is then analyzed offline by the Analyzer tool to see if the messages

Page 7

http://www.ws-i.org

WSRPtk

meet the conformance requirements. The WSRPtk extends the WS-1 Analyzer by
implementing test assertions that eval uate the messages with respect to the WSRP V1
Specification. The Profileisan XML file that contains a description of each test assertion,
and isused to tell the Analyzer which test assertions to execute. The logic for each test
assertion iswritten in a Java class which the Analyzer |oads at runtime.

The Analyzer creates an XML file containing the Report which summarizes the results of the
test assertions.

Diagram of Test Kit Architecture
2.6. Development

2.6.1. Development

2.6.1.1. Introduction

This section covers information needed by developersto add new test assertionsto the V1
Conformance Test Kit. It is assumed that the reader is familiar with the test kit architecture
and WSRP.

Creating a new Test Assertion requires 2 basic steps:

1. Enablethe Test Assertion in the Profile, or add it to the Profile if it doesn't aready exist.
2. Write the Java code to implement the Test Assertion logic.

Additional steps are required if the Test Assertion requires the use of the Specialized Portlet:

1. Addthe JSPfileto the webapp.
2. Add the JSP to the flow_script_master.xml and flow_script.xml files.

2.6.2. WSRP Profile

2.6.2.1. Introduction

The Profileisan XML document that contains a description of each Test Assertion in the test
kit. The Profileisfound inthe pr of i | e directory and is called

WERPPr of i | eTest Asserti ons. xnl . If you open the file in abrowser window, an
XSL stylesheet isloaded which converts the XML to HTML for more convenient viewing.

The Profile was created initially from the conformance statements found in the WSRP
Specification. The conformance statements are documented in a spreadsheet on the OASIS
WSRP site. The conformance statements were boiled down into Test Assertions and
documented in the Profile.

Page 8

WSRPtk

The Profile isread at runtime by the Analyzer to determine which Test Assertions should be
executed. Test Assertions which are "enabled" are executed, the rest are skipped.

Types of Test Assertions

There are 3 types of Test Assertions. The primary focus the V1 Conformance Test Kitisto
verify the message content of arunning WSRP service. Asaresult, the vast mgjority of Test
Assertions are of the Message type.

« Discovery -- Verifies UDDI entries
« WSRP Profile has no UDDI assertions

» Description -- VerifiesWSDL entries
« WSRP Profile has some WSDL assertions

« Message -- Verifies message content in the log file
* WSRP Profile has many message assertions
* Primary focus of test kit.

If the configuration options for the Analyzer requires WSDL processing, then the Analyzer
reads the WSDL and execute the Test Assertions from the Profile that are in the description
artifact.

After the WSDL is evaluated, the Analyzer processes the message log file one message at a
time. In general, for each message in the log file, the Analyzer executes each enabled Test
Assertion in the Profile, although the entryType attribute results in some high level filtering.
Test Assertions which have an entryType of requestM essage are executed only for requests,
those having an entryType of responseM essage are executed only for responses, and those
with an entry Type of anyMessage, are executed for all messages.

A Test Asssertion evaluates each artifact passed to it, and generates aresult. The result can
be Pass, Fail, or Not Applicable.

The Analyzer finds the proper Java class to execute for a Test Assertion based on a naming
convention where the Java class has the same name as the assertion id in the Profile.

Sample Test Assertion

<test Assertion id="RP0070" entryType="responseMessage" type="required"
enabl ed="f al se">
<cont ext >get Ser vi ceDescri pti onResponse</ cont ext >
<assertionDescripti on>
I f the Consuner uses a Producer who has set requireslnitCookie
to a value other than "none", it shall
1. Invoke initCookie for each portlet fromsuch a

Page 9

WSRPtk

Producer for each new end-user;
2. Return the set cookie(s) only for this end-user
(see AS006, AS023 and AS024).

</ assertionDescription>

<fail ureMessage>
When a Producer sets ServiceDescription.requireslnitCookie
to a value other than "none", the Consumer
has to invoke initCookie()

</fail ureMessage>

<failureDetail Descripti on>{ SOAP nessage}{any XM. parser error

nessages}</failureDetail Descripti on>

<addi tional EntryTypelLi st >
<messagel nput >none</ messagel nput >
<wsdl | nput >none</ wsdl | nput >
<uddi | nput >none</ uddi | nput >

</ addi ti onal EntryTypelLi st >

<prereqList/>

<r ef erencelLi st >
<reference profil el D="WSRP1"/ >

</referencelLi st>

<conment s/ >

</testAssertion>

Elements and Attributes of a Test Assertion

Many of the elements and attributes in the Test Assertion are not used, but the ones that are
important are:

id attribute This is the uniqgue name of the Test Case.
Naming conventions are discussed in more
detail below.

Type attribute This is determines to which type of message log

td the Test Case applies. For example:
responseMessage, requestMessage, binding.

type attribute "required" or "recommended". Used to
distinguish MUST from SHOULD in
Conformance Statements.

enabled attribute "true" or "false". If "true", execute the test case
on the data. If "false", just skip it. This is used
when the Test Case is added to the Profile but
the code hasn't been written yet. The Test Case
will show up on the report as not enabled.

Page 10

WSRPtk

assertionDescription element This is the same as the Conformance Statement
text.

failureMessage element This text is output in the report when a Test
Case fails.

preregList element This element is used to list other Test Cases (by

id) that must be run before this one. If a
prerequisite Test Case fails, then so does this
one.

2.6.3. Programming New Test Assertions

2.6.3.1. Introduction

The following sections provide an overview of the organization of the Java classes which
makeup the test kit. The test kit extends the WS-1 implementation and relies on the behaviour
of existing base classes wherever possible.

2.6.3.2. Factory

There is an extension point in the WS-I framework which allows us to insert our own factory
implementation during initialization. We use these factories to cause our specialized classes
to be constructed. Thewsi . pr operti es file specifies our factory:

wsi . profile.validator.factory=org. oasis.wsrp.test.inpl.WRPValidatorFactoryl npl

2.6.3.3. WS-| Base Validator

Refer to the diagram below. The classesin yellow are the WS-1 base classes and the classes
in white are the WSRP extensions. The WBRPVal i dat or Fact or yl npl createsthe
WSRP specific extensions when the Analyzer is started. The
WERPMessageVal i dat or | npl class plays an important role in the execution of Test
Assertions because there is only one instance of this class for all message Test Assertions.
The WsRPMessageVal i dat or | npl instance is used to share data between Test
Assertions or between messages. Thisis discussed in more detail in a subsequent section.
Relationships among base validateor implementations and extensions

In the WSRPTK, there are very few Test Assertions which deal with the WSDL. The vast
majority of Test Assertions are focused on examining the messagesin the log file. In general,
thereis a symmetrical treatment of message artifacts and description artifacts. For the next

Page 11

WSRPtk

few sections, only the structure and relationships among the classes involved in the message
processing side of the system are discussed. Classes which handle description artifacts may
be included on the diagrams, but are not distinguished further.

2.6.3.4. Extending AssertionProcess

Refer to the diagram below. Again, the yellow classes are WS-1 base classes, and the white
classes are WSRP specific. The small class, RP0090, at the bottom of the diagramis an
example of a Test Assertion.
Test Assertions ultimately extend AssertionProcess and get areference to
WSRPMessageV aidatorlmpl

Ultimately, all Test Assertions are derived from Asser t i onPr ocess. This class declares
theval i dat e() method that all Test Assertions must implement. The

Asserti onProcess classalso declares amember variable to hold an instance of
BaseVal i dat or | npl .

WSRPTK introduces 2 intermediate classes between Test Assertions and
AssertionProcess. WbRPBaseAsserti onProcess isused to implement
convenience methods such aspass(),fail (), etc, for setting the result of a Test
Assertion, regardless of whether the Test Assertion is on the message artifact side or the
description artifact side.

2.6.3.5. Constructor Hack

WERPMessageAsserti onProcess extendsthe WsRPBaseAsserti onProcess in
order to declare the instance of the specialized WRPMessageVal i dat or | npl to which
all the Test Assertions need access for data sharing. The BaseVal i dat or | npl is
responsible for parsing and |oading the message log file and then creating and invoking the
Test Assertionsin the Profile. When a Test Assertion Java class, e.g. RP0090, gets
initialized, the BaseVal i dat or | npl passes an instance of

BaseMessageVal i dat or | npl into the constructor. The Test Assertion calls the
constructor on it's superclass, WRPMessageAssert i onPr ocess, passing the
BaseMessageVal i dat or | npl . The superclass forces a cast of the
BaseMessageVal i dat or | npl to WBRPMessageVal i dat or | npl and savesitina
protected member variable called val i dat or .

This hack is necessary for historical reasons. The original WS-1 framework was organized so
that all the Test Assertion classes were inner classes of the

WERPMessageVal i dat or | npl class, and so they had direct access to its methods and
state. At some point, the architecture was changed so that the Test Assertions were separated
into individual files and this hack became necessary to preserve access to the specialized

Page 12

WSRPtk

methods and state of the WbRPMessageVal i dat or | npl .

2.6.3.6. WSRPM essageValidator Impl

As explained above, there is asingle instance of this classwhich isavailableto all Test
Assertions through the use of the protected variable val i dat or . This class offers many
convenience methods as well as saving state between messages. Let's look at the following
Test Assertion:

RP0510 The value supplied in MarkupParams.windowState
shall be either "wsrp:view" or one of the values from
the PortletDescription.markupTypes[].windowStates
for amatching mime type, which hasto have avalue

This Test Assertion looks at aget Mar kupRequest and has to check the value of window
state against a set of valid window states which were supplied in the

get Servi ceDescri pti onResponse. In the following code fragment, RP0510 uses
convenience methods from the W6RPMessageVal i dat or | npl to locate the

of f eredPor t | et fromthesaved get Ser vi ceDescri pti onResponse.

R

/1 we got a portlet handl e out of the request, so

/1 1ookup the offeredPortlet in the getServiceDescripti onResponse which
was

/1 previously saved

regHandl e = val i dator.findRegi strationHandl e((Node)

doc. get Docurnrent El enent ()) ;

portl et Handl e = val i dator. checkFor Cl onedPortl et (portl et Handl e,
regHandl e) ;

of feredPortl et = validator.findOferedPortlet(portletHandle);

if (offeredPortlet == null) {

/1 this means the portlet was not found in the serviceDescripti onResponse
fail ("Cannot find portlet with handle: " +

portl et Handl e +

" in serviceDescriptionResponse");

done = true;

}

This Test Assertion relies on the fact that another Test Assertion, RP0320 saves the
servi ceDescri pti onResponse. Notethat if alog fileis analyzed that does not
containtheser vi ceDescri pti onResponse message, then any Test Assertion that
relieson it will fail.

The WsRPMessageVal i dat or | npl has many methods which are beyond the scope of
this tutorial. The reader is encouraged to examine the source code. The following diagram

Page 13

WSRPtk

shows the WsRPMessageVal i dat or | npl and all the classesit references. Not all the
methods are visible.
WSRPMessageV aidatorlmpl

2.6.3.7. Choosing a Base Classto Extend

There are severa choices as to which class to extend to create anew Test Assertion. The
WERPBaseAsserti onProcess class, the BaseRP class, Cust ol t entChecker, or
an existing Test Assertion. The diagram below shows several Test Assertions and the classes
they extend. Cust om t emChecker is specialized and is used to parse the markup have a
listener called when certain things are found. The Bas eRP class checks the message type
and then delegates handling of the message to the Test Assertion subclass. Thisdesign
pattern was introduced after many Test Assertions were aready implemented, so you may
discover Test Assertions that would have benefited from this approach.

WSRPM essageA ssertionProcess

2.6.3.8. Worked Example
Let'slook at asimple Test Assertion.

RP0O090 Every time an extension element appearsin a WSRP
message, it's child element shall use the xsi:type
attribute to declareits type.

Here is the source code;

/*
* Copyright (c) 2002-2005 |IBM Corporation. Al rights reserved.
*

K e e e e e e e e e e e e e e e

* F F

@ut hor Juli e MacNaught jrmacna@is.ibm com

@ut hor Martin Fanta Martin. Fanta@z.i bm com

*

*/

package org.oasis.wsrp.test.inpl.nessage;

i mport javax.xm .transform Transfor mer Excepti on;

i mport org.eclipse.wst.wsi.internal.core. Wl Excepti on;

i mport org.eclipse.wst.wsi.internal.core.profile. TestAssertion;

i mport org.eclipse.wst.wsi.internal.core.profile.validator.EntryContext;
i mport
org.eclipse.wst.wsi.internal.core.profile.validator.inpl.BaseMessageVali dator;
import org.eclipse.wst.wsi.internal.core.report.AssertionResult;

i mport org.w3c. dom Docunent;

i mport org.w3c. dom NanmedNodeMap;

Page 14

WSRPtk

i mport org.w3c. dom Node;

i mport org.w3c. dom Nodeli st ;

/**

* Assertion: Every time an extension el enent appears in a WSRP nessage,
it's child

* element shall use the xsi:type attribute to declare its type.
*

* @ut hor Julie MacNaught (jmacna@s.ibm con

* @uthor Martin Fanta (Martin. Fanta@z.ibm com

*

*/

public class RP0O090 extends WSERPMessageAssertionProcess {
publ i ¢ RPO090(BaseMessageVal i dator inmpl) {

super (i nmpl);

public AssertionResult validate(TestAssertion testAssertion, EntryContext
entryContext) throws WSl Exception {
if (validator.isOneWayResponse(entryContext)) {
na();
} else {
try {
/] parse the request nessage
Docunent reqDoc = entryCont ext. get Request Document () ;
/1 get all the extension elenments included in the request
NodeLi st ext Nodes = Nodeltils. get Nodes(reqDoc, "extension");
i nt ext NodeCount = ext Nodes. getLength();
i f (extNodeCount < 1) {
na();
} else {
Node ext Node, chil dNode;
NanmedNodeMap attri bs;
for (int ii =0; ii < extNodeCount; ii++) {
ext Node = extNodes.iten(ii);
chi | dNode = ext Node. get FirstChild();
if (childNode !'= null) {
attribs = chil dNode. get Attributes();
if (attribs.getNamedltem("xsi:type") !'= null) {
/] it is probably sufficient to assune that if the
attribute is present,
/1 the condition of this test case is fulfilled
pass() ;
} else {
fail ("If an extension elenent is present, its child has to
Xsi:type' attribute defined");

have the

} else {
war n(" Ext ensi on el enent has no children");

Page 15

WSRPtk

}
}

} catch (TransfornmerException te) {
te.printStackTrace();
fail (te.get Message());

}
}

return createAssertionResult(testAssertion, result,
failureDetail Message);

}
}

This Test Assertion extends WoRPBaseAsser t i onPr ocess and implements the

val i dat e() method. It also implements a constructor so it can establish a handle to the
WERPMessageVal i dat or | npl class. It usesaclasscalled NodeUt i | s which
implements various shortcuts to XPATH for finding nodes in messages.

2.6.4. Specialized Portlet

2.6.4.1. Introduction

The purpose of the Specialized Portlet isto cause certain conditions to occur so that the
Analyzer can look athe messages and detemine if the Consumer handled the situation
according to the spec. The Specialized Portlet generates markup with particular values that
the Analyzer can look for in the message log.

The Specialized Portlet works by reading afilecalledf | ow_scri pt. xm whichtellsit
which JSP file to load. The JSP file actually contains the markup that the Specialized Portlet
supplies on agetMarkupRequest. Thef | ow_scri pt. xm fileallowstest casesto be
repeated a particular number of times.

Hereisasampleof thef | ow _scri pt. xm file

2.6.4.2. flowscript.xml

The SpecializedPortlet reads an XML file, calledf | ow_scri pt. xm , which tellsthe
portlet which tests to execute. The test cases are actually represented by JSP files. Hereisa
sample of thef | ow_scri pt. xnl file

<fl ow>
<case id="134">
<pass repeat Count ="2">
<j splnclude nane="test_case 1340 _1.jsp" />
</ pass>

Page 16

WSRPtk

</ case>
</ fl ow>

A Specialized Portlet JSP typically contains aform and has javascript logic that causes the
form to be automatically submitted. This allows the Specialized Portlet to execute all the
tests without further human intervention.

2.6.4.3. Specialized Portlet Example

Let'slook at an example:

RP1340 When an activated portlet URL has specified the
wsrp-navigational State portlet URL parameter, the
Consumer shall supply its value unchanged in the
M arkupParams.navigational State field.

Hereisthe JSP file for this test (line feeds have been added to improve readability):

<%@ page content Type="text/htmnl ; charset=UTF-8" | anguage="java" %
<U@taglib uri="/WEB-INF/tld/portlet.tld prefix= portlet'%
<portl et:definelbjects/>

<scri pt>

set Ti meout (' wsrp_rewite_reload()', 5000);

function wsrp_rewite_reload()

/1 only the first instance of the portlet shall subnmt the form
var form = docunent.forms.wsrp_test submit _form

if((formwsrp_test counter.value == "0") &&
(formwsrp_test_autoSubnit.value == "true"))
formwsrp_test_autoSubmt.value = "fal se";
formwsrp_test _counter.value = "1";

/1 callback function for JSP's which are including this javascript
wsrp_test_do(form;
formsubmit();
}
}
function wsrp_test_do(form
{
}
</script>
<form nanme="wsrp_test submt form' nethod="post"
action="wsrp_ rewite?
wsr p- ur | Type=bl ocki ngActi on&
WST p- noDde=wsr p: Vi ew&
WST p-wi ndowSt at e=wsr p: nor mal &
wsr p- secur eURL=f al se&

Page 17

WSRPtk

wsrpnavi gati onal St at e=wsrp_t est _navi gati onal State
/wsrp rewite
&wsrp_test expect edNavi gational State=wsrp_test navi gati onal State">
Test case #134.

<i nput type="hidden" nanme="wsrp_test autoSubmt" val ue="true"></input>
<i nput type="hi dden" nane="wsrp_test_current Case"
val ue="<%(String)render Request.get Attri bute("wsrp_test_currentCase") %" ></i nput >
<i nput type="hi dden" name="wsrp_test_ passCounter”
val ue="<%(String)render Request. get Attri bute("wsrp_test_passCounter")%"></input >
<i nput type="hi dden" name="wsrp_test counter" val ue="0"></input>
<i nput type="submt" val ue="Subm t"></input>
</ form

Notice that the rewrite URL contains navigational State. Here is the Test Assertion code that
examinesthelog:

private static final String CODEM NAVE EXPECTED NAVI GATI ONAL_STATE =
"wsrp_test_expectedNavi gati onal St ate";
protected void processPerfornBl ocki ngl nteracti onRequest (Document reqDoc)
throws WSl Exception, Transforner Exception {
/1 find the interactionParans node
Node i aParansNode = Nodeltils. get Node(regDoc, "interactionParans")
if (iaParansNode != null) {
/1 find all form codeneters
NodelLi st formParamNodes = Nodeltil s. get Nodes(i aPar ansNode,
"fornParaneters");
i nt formParamCount = formnParanmNodes. get Lengt h();
Node f or nPar aniNode;
String fornParanNanme, expectedNavStateVal ue = nul |
/1 go through the formcodeneters until we find the one that
interests us (if any)
for (int ii =0; ii < fornmParamCount; ii++) {
f or nPar amNode = for nPar amNodes. iten(ii);
f or nPar anNane NodeUti | s. get Attri buteVal ue(fornParamNode, "nane");
i f (CODEM_NAME_EXPECTED_NAVI GATI ONAL_STATE. equal s(f or mPar anNanme)) {
/1 find the val ue subnode
Node val ueNode = Nodeltil s. get Text Node(f or nPar anNode, "val ue");
expect edNavSt at eVal ue =
Nodelt i | s. get Saf eText NodeVal ue(val ueNode) ;
br eak;
}
Yy Il for i
i f (expectedNavStateValue != null) {
/1 conpare the expected navigational state value to the one
actaul ly supplied
/1 find the markupParams node
Node mar kupPar ansNode NodelUti | s. get Node(reqDoc, "mar kupParans");
i f (markupParansNode != null) {

Page 18

WSRPtk

/1 find the navigational state subnode
Node navSt at eNode = Nodeltil s. get Text Node(mar kupPar ansNode,
"navi gational State");
String navState = Nodeltil s. get Saf eText NodeVal ue(navSt at eNode) ;
i f (expectedNavSt at eVal ue. equal s(nhavState)) ({
pass();
} else {
fail(
"Expected navi gati onal state:
+ expect edNavSt at eVal ue
+ "; supplied navigational state:
+ navState);

} else {
fail ("M ssing markupParans node");

} /1 expected navigational state value not null
} // interaction codens not null
} /1 processPerfornmBl ocki ngl nteracti onRequest ()
The Test Assertion looks at the value of an interaction parameter for the value that the
navigational State should contain.
2.7. WSRP Conformance Test Kit Tutorial

2.7.1.
Click hereto start

Table of contents Author: Julie MacNaught

WSRP Conformance Test Kit Tutorial o)
E-mail: jmacna@us.ibm.com

Topics

Homepage: http://wsrptk.sourceforge.net/
Test Kit Requirements .

Download presentation
WS- Test Tools

WSRP Conformance Test Kit Architecture

WSRP Profile

Running Everything End to End

WS-| Components

Monitor

Analyzer

Page 19

http://wsrptk.sourceforge.net/

WSRPtk

Analyzer Configuration File
Profile Details

Sample Test Assertion

Test Assertion | mplementation

WSRPV alidatorFactoryl mpl

WS-| Base Classes

Assertion Constructor Magic
Using WSRPMessageV alidatorlmpl for State

Extending Base Classes
Test Assertion Example

Slide 21

NodeUtils

Specialized Portlet

XML Script File
Specialized Portlet Example

Slide 26
Slide 27

Running the Specialized Portlet
WSRPTK Source Forge Project

WSRPTK Directory Organization

Prerequisites

Prerequisites, cont&€™d

Slide 33

Contributing to the WSRPTK Project

Source Forge User Types

Becoming a Devel oper

Project Administration

Release Process

Page 20

WSRPtk

Handling 3rd Party Contributions
Project TODOs

3. All

Page 21

	1 About
	1.1 Maintaining this Website
	1.1.1 Under Construction

	1.2 Project Roles
	1.2.1 Source Forge User Types
	1.2.2 Becoming a Developer
	1.2.3 Conformance Sub Committee
	1.2.4 Handling 3rd Party Contributions

	2 WSRP V1 Conformance
	2.1 WSRP V1 Conformance Test Kit
	2.1.1 Introduction

	2.2 Getting Started
	2.2.1 Obtaining the Release
	2.2.2 Obtaining and Installing Prerequisites
	2.2.2.1 Eclipse Web Tools
	2.2.2.2 WS-I Testing Tools
	2.2.2.3 XSL Stylesheet Issues

	2.3 Executing the Test Kit
	2.3.1 Summary of Steps
	2.3.2 The Monitor Component
	2.3.3 The Analyzer Component

	2.4 Project Directory Structure
	2.5 Architecture
	2.5.1 Introduction

	2.6 Development
	2.6.1 Development
	2.6.1.1 Introduction

	2.6.2 WSRP Profile
	2.6.2.1 Introduction
	2.6.2.1.1 Types of Test Assertions
	2.6.2.1.2 Sample Test Assertion
	2.6.2.1.3 Elements and Attributes of a Test Assertion

	2.6.3 Programming New Test Assertions
	2.6.3.1 Introduction
	2.6.3.2 Factory
	2.6.3.3 WS-I Base Validator
	2.6.3.4 Extending AssertionProcess
	2.6.3.5 Constructor Hack
	2.6.3.6 WSRPMessageValidatorImpl
	2.6.3.7 Choosing a Base Class to Extend
	2.6.3.8 Worked Example

	2.6.4 Specialized Portlet
	2.6.4.1 Introduction
	2.6.4.2 flowscript.xml
	2.6.4.3 Specialized Portlet Example

	2.7 WSRP Conformance Test Kit Tutorial
	2.7.1

	3 All

